УДК 504. 062 ББК 28.080.1

ВЛИЯНИЕ АНТРОПОГЕННЫХ ФАКТОРОВ НА СОЗДАНИЕ ПАРАГЕНЕТИЧЕСКИХ ЛАНДШАФТОВ

Л. Н. Ташнинова

Парагенетический ландшафт представляет собой систему пространственно сложных региональных или типологических комплексов, связанных общностью своего происхождения. Примером пространственно-временного варианта генезиса такого ландшафта может служить природно-территориальный комплекс «Восточный Маныч», занимающий область аккумулятивных равнин морского происхождения.

В середине третичного периода Кумо-Манычская впадина неоднократно заливалась морскими водами, образуя пролив, соединяющий Каспийское и Черное моря. Во время регрессии, когда впадина освобождалась от воды, в ней сформировались две речные долины — Западного и Восточного Маныча. В последний раз впадина была затоплена во время нижнехвалынской трансгрессии. Каждая из двух долин имеет пойменную и три надпойменные террасы. В настоящее время пойменная терраса Западного Маныча заполнена водами озера Маныч-Гудило, в пойме Восточного Маныча находится Чограйское водохранилище.

Для района исследований характерны следующие климатические показатели: сумма положительных температур 3400—3500°, ГТК<0,7, осадки составляют 358—400мм. Температура воздуха летом достигает +40°С, минимальная в январе -35°С. За вегетационный период выпадает 200—250 мм осадков, преимущественно за счет кратковременных ливней. В пределах этого образования выделяется комплекс озерностепных ландшафтов, почвенный покров которых представлен каштановыми, светло-каштановыми, лугово-каштановыми почвами, солонцами и солончаками луговыми

[Агроклиматические ресурсы Калмыцкой АССР 1974: 19].

Формирование каждого типа почв связано с элювиальным, трансэлювиальным и супераквальным типом ландшафта, где рельеф, подстилающие породы, уровень ГВ определяют тип водного режима, миграцию химических элементов и другие почвенные процессы.

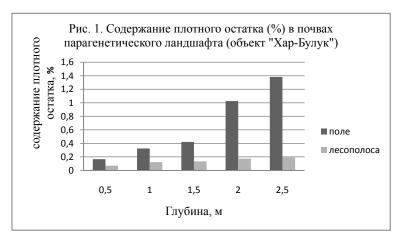
В супераквальном ландшафте преобладают солянковые, тростниковые и луговопырейные ассоциации, приуроченные к почвам гидроморфного типа (солончаки, луговые типы, аллювиальные). В трансэлювиальном ландшафте преобладают разнотравно-пырейные, разнотравно-полынные, злаково-пырейные ассоциации, приуроченные к почвам полугидроморфного и гидроморфного типа (гидрометаморфизированными почвами) и каштановыми разновидностями. В элювиальном ландшафте преобладают полынно-разнотравные, полынно-типчаковые, разнотравно-белополынно-ковыльные, типчаково-ромашниковые ассоциации на зональных каштановых, светло-каштановых солонцеватых почвах [Ташнинова А. А. 2009: 51; Ташнинова Л. Н., Ташнинова А. А. 2010: 52–61].

Антропогенные, т. е. созданные человеком, ландшафты развиваются согласно природным закономерностям и создают один из генетических рядов природных ландшафтов. Они находятся в тесной связи с фоновыми природными комплексами, образуя с ними парагенетические системы [Мильков 1978: 25].

На территории Калмыкии примером парагенетических ландшафтов могут быть опустыненные земли Прикаспия, наземные

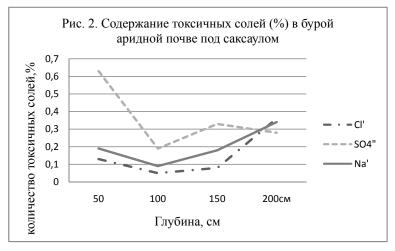
экосистемы экотонной зоны искусственных водоемов Кумо-Манычской впадины, защитные лесные насаждения Ергеней, система обводнительных и оросительных каналов Сарпинской низменности, техногенные объекты. Сложность и многогранность влияния антропогенного фактора, связанного с использованием естественных природных экосистем, приводит к трансформации состояния и функционирования экосистем на региональном и биосферном уровнях [Авессаломова 1992: 3].

В аридных регионах, где наиболее значительным антропогенным фактором является сельскохозяйственная деятельность, влияние этого фактора достигло критического уровня. Например: распашка легких почв привела к росту площадей открытых песков Прикаспия; полив минерализованной водой орошаемых полей привел к росту засоленных площадей близ оросительных систем; рост поголовья скота привел к пастбищной дигрессии и истощению земли. Длительная история хозяйствования на аридных территориях, в том числе и в Калмыкии, определила сильную деградацию естественных пастбищ, опустынивание, истощение природно-ресурсного потенциала и, как следствие, снижение уровня жизни населения.


На первом этапе изучения этой проблемы необходимо обратить внимание на трансграничные процессы, используя для этого ландшафтно-геохимические подходы. Антропогенные ландшафты после создания вступают в тесный взаимный обмен веществом и энергией со смежными компонентами. С одной стороны, антропогенные ландшафты зависят от окружающей природной среды, с другой — сами влияют на смежные комплексы, создавая поле обратного действия. Трансформация ландшафтов происходит под влиянием ряда факторов: геоморфологического, гидрологического, климатического. В условиях аридного климата все эти факторы работают во взаимосвязи, образуя новый парагенетический ландшафт [Ташнинова Л. Н., Ташнинова А. А. 2011: 152].

К числу универсальных показателей структурно-функциональной перестройки природно-антропогенных ландшафтов относится изменение структуры почвенного покрова, и в особенности таких важных показателей, как солевой состав почв.

В качестве примера были взяты два объекта: объект «Хар-Булук», светло-каштановая почва (Ергени), расположенный в умеренно аридной зоне с ГТК 0,5–0,6 и среднегодовыми осадками 300–400 мм; объект «Белое озеро», бурая аридная почва (Прикаспий) — в сильно аридной зоне с ГТК 0,3–0,4 и среднегодовыми осадками менее 300 мм.


В задачу исследований входило изучение трансформации почв как одной из главных составляющих в этих системах. Известно, что почва относится к открытым системам, устойчивость которых в значительной степени зависит от внешних факторов.

На Ергенях защитные лесонасаждения и прилегающие поля образуют функциональную парагенетическую систему. Кроме изменений микроклимата, флоры и фауны, водно-воздушного режима, в самих насаждениях и на прилегающих полях происходит трансформация почвообразовательных процессов: изменение водно-солевого и питательного режима почв, связанное с инфильтрацией влаги и режимом грунтовых вод, микроклиматом, агротехникой. На объекте «Хар-Булук» под 36-летней вязовой лесополосой отмечено рассоление почвогрунта по всему 5-метровому слою. Если содержание плотного остатка на контрольной площадке составляло по слоям: 0-50 cm - 0.166 %, 50-100 cm - 0.324 %,100-150 см — 0,421 %, 150-200 см — 1,025 %, 200-300 см — 1,382 %, 300-400 см — 1,306 %, 400-500 см — 1,297 %, то под 36-летней лесополосой содержание плотного остатка составляло по слоям: 0-50 cm - 0.069 %, 50-100 cm - 0.122 %, 100-150 cm — 0,134 %, 150-200 cm — 0,173 %, 200-300 см — 0,193 %, 300-400 см — 0,215 %, 400-500 см — 0,238 % [Ташнинова, Химина, Богун 1998: 36]. В данном случае лесные полосы плотной конструкции при обеспечении их дополнительным увлажнением за счет расположения их на трансэлювиальном типе ландшафта внесли существенные изменения в профильное размещение солей (рис. 1).

На опустыненных землях Прикаспия образование антропогенных ландшафтов вызвало трансформации почвенного покрова: потерю верхнего гумусового горизонта, изменение водного режима почв. На участках с проведенными агролесомелиоративными работами по закреплению подвижных песков отмечены изменения ландшафтов опустыненных территорий. На прикаспийском участке были расположены 10-летние посадки саксаула на бурых аридных песчаных почвах с близким залеганием (УГВсм) минерализированных (31 хлоридно-сульфатных грунтовых вод. Господствующим процессом в почвогрунтах является соленакопление, обусловленное выпотным типом водного режима. Высокая концентрация солей в верхней части профиля (плотный остаток в слое 0-40 см ≥ 1 %, запасы солей составляют 50 т/га) связана с подъемом минерализированных грунтовых вод и интенсивным их расходом на эвапотранспирацию, а также с ежегодным поступлением легкорастворимых солей из опада саксаула, ежегодное накопление которых

может составлять 5-20 т/га. Причины гибели 8-10-летних насаждений связаны с высокой засоленностью почвогрунтов: гор. А и В бурно вскипают с поверхности, в гор. В и С имеются четко выраженные карбонатные включения и кристаллы солей; глубже залегают увлажненные сизовато-бурые суглинистые и глинистые слои, влияющие на капиллярный подъем. Преобладающие соли в 1,5-метровом слое почвы: Na₂SO₄ (56 % от общей суммы солей), NaCl (17 %), MgCl₂ (10 %), также присутствует сода. Содержание хлор-иона в нижних слоях находится в пределах, оказывающих угнетающее и токсичное влияние на древесную растительность (рис. 2). На почвах этого типа местообитаний, с близким залеганием минерализированных грунтовых вод, как показали наблюдения, хорошо произрастает тамарикс, а местами лох и терескен. Следует отметить, что качественный состав солей и грунтовых вод на родине саксаула несколько иной (преобладает CaSO₄), хотя общая минерализация солей довольно высокая.

Необходимо подчеркнуть, что выбор саксаула — среднеазиатского аборигена — для закрепления подвижных песков был неудачным. Корневая система саксаула, достигающая 10-11 м, при уровне засоленных грунтовых вод (520 см) сыграла роль насоса. Известно, что саксаул хорошо выдерживает сульфатное засоление, но не хлоридное. В данном случае господствующим процессом в почвогрунтах стал процесс соленакопления, обусловленный выпотным типом водного режима. В результате на месте участка с песчаным незасоленным в верхнем 3-метровом слое почвогрунта образовался участок с фрагментом галофитной пустыни, с высокой концентрацией солей в верхнем слое 0-40 см (плотный остаток составляет 1 %). В сильно измененных ландшафтах происходит трансформация компонентов природной среды с нарушением естественных связей.

Литература

- Авессаломова И. А. Экологическая оценка ландшафтов. Учеб. пособие. М.: Изд-во Моск. ун-та, 1992. 89 с.
- Агроклиматические ресурсы Калмыцкой АССР. Л.: Гидрометиоиздат, 1974. 187 с.
- Мильков Ф. Н. Рукотворные ландшафты. Рассказ об антропогенных комплексах. М.: Издво «Мысль», 1978. 86 с.
- Ташнинова А. А. Роль абиотических факторов в формировании почв озерно-степных ланд-шафтов Маныча // Экология и почвы. Роль абиотических факторов в почвообразовании. Мат-лы XVI Всерос. школы. Т. VII. Пущино: ОНТИ ПНЦ РАН, 2009. С. 51.

References

- Avesalomova I. A. [Ecological Assessment of Landscapes]. Moscow: Moscow State University, 1992. 89 p. (In Russ.)
- [Agroclimatic Resources of the Kalmyk ASSR]. Leningrad: Gidrometioizdat, 1974. 187 p. (In Russ.)
- Milkov F. N. [Man-made Landscapes. The Story about Anthropogenic Complexes]. Moscow: Mysl, 1978. 86 p. (In Russ.)
- Tashninova A. A. [The Role of Abiotic Factors in Formation of Soils of Lake and Steppe Landscapes of Manych]. In: [Ecology and Soils. The Role of Abiotic Factors in Soil Formation]. Conf. proc. Vol. VII. Pushchino: Pushchino Scientific Center of the RAS, 2009. P. 51. (In Russ.)

Оценка современного состояния ландшафтов основана на выявлении особенностей их антропогенной трансформации, которые определяют главные тенденции развития и их экологические последствия. Трансформация среды под влиянием антропогенных факторов вносит значительные изменения как в современное состояние почв, так и в направление их эволюции. Изучение антропогенно-измененных ландшафтов показало, что в зависимости от совокупности и характера взаимодействия природных и антропогенных факторов ответные реакции природной среды строго дифференцированы. Наличие парагенетических взаимосвязей диктует необходимость изучения не только антропогенных ландшафтов, но и всего комплекса, включающего и прилегающие природные экосистемы, при соблюдении принципа природно-антропогенной совместимости.

- Ташнинова Л. Н., Ташнинова А. А. Почвы аридных зон Калмыкии // Вестник Южного научного центра РАН. 2010. Т. 6. № 1. С. 52–61.
- Ташнинова Л. Н., Ташнинова А. А. Почвы парагенетических ландшафтов аридных зон Калмыкии // Мат-лы Всерос. конф. «Закономерности изменения почв при антропогенном воздействии и регулировании состояния и функционирования почвенного покрова». М.: Почвен. ин-т им. В. В. Докучаева РАСХН, 2011. С. 151–154.
- Ташнинова Л. Н., Химина Е. Г., Богун А. П. Биоэкологические условия роста защитных лесонасаждений на юге Ергеней. Элиста: АПП «Джангар», 1998.105 с.
- Tashninova L. N., Tashninova A. A. [Soils of Arid Zones of Kalmykia]. *Bulletin of Southern Scientific Centre of the RAS.* 2010. Vol. 6. No. 1. Pp. 52–61. (In Russ.)
- Tashninova L. N., Tashninova A. A. [Soils of Paragenetic Landscapes of Arid Zones of Kalmykia]. In: [Laws of Change of Soils under Anthropogenic Influence and Regulation of Condition and Functioning of Soil Cover].
 Moscow: Russian Academy of Agriculture, 2011. Pp. 151–154. (In Russ.)
- Tashninova L. N., Khimina E. G., Bogun A. P. [Bioecological Conditions of Growth of Protective Forest Plantations in the South of Yergenei]. Elista: Dzhangar, 1998. 105 p. (In Russ.)